

Terrestrial Trunked Radio

Advantages of TETRA Technology

Fast call setup time (group call: < 300 ms) Individual and group calls Direct mode communication between radios Data services Frequency-economic

Security features Emergency and priority calls High spectral efficiency Infrastructure separate from public mobile networks (avoids congestion) Fallback mode for base stations

Frequencies & Channels

TETRA in Europe: 380 to 400 MHz 410 to 430 MHz 450 to 470 MHz

Typical duplex spacing:

Calculation of RF parameters: frequency offset

equivalent DL channel = 420.0125 MHz Duplex spacing = 10 MHz

General Technical Data

Channel bandwidth	25 kHz
Access technology	TDMA
Time slots (channels per carrier)	4
Modulation	$\pi/4$ DQPSK (2 bits per symbol)
Symbol rate	18 000 symbols/s (255 symbols/slot)
Maximum data rate	28.8 kbit/s
Call setup time	< 300 ms
Communication	Point to point (duplex, simplex) Point to multipoint
Encryption	Air interface End to end
Voice codec	ACELP (Algorithmic Code Excited Linear Prediction), 4.8 kbit/s

TEDS

TEDS (TETRA Release 2)

Time slots

TDMA/OFDMA Access technology 4 Modulation Quadrature Amplitude Modulation (QAM): 4-QAM, 16-QAM, 64-QAM Symbol rate on each sub-carrier 2400 symbols/s (34 symbols/slot) Downlink packet data throughput (kbit/s) 25 kHz 50 kHz 100 kHz 150 kHz 4-QAM 27 58 90 11 16-QAM 22 54 116 179 64-QAM 33 80 175 269 64-QAM 107 44 233 359 160 64-QAM 66 349 538

Abbreviations

DED	Pit orror rate	МССЦ	Main control channel	Тл	Tor
DER	DIL ETTOT TALE	MCCH		14	Tes
BS	Base station	MER	Message erasure rate		DÇ
DMO	Direct mode operation	MNC	Mobile network code	TCH	Tra
DQPSK	Differential quadrature phase shift keying	MS	Mobile station	TDMA	Tin
ETSI	European Telecommunications Standards Institute	PDO	Packet data optimised (standard not implemented)	TEDS	TE
GSSI	Group short subscriber identity	PEI	Peripheral equipment interface		mis
GTSI	Group TETRA subscriber identity	PTT	Push to talk	TIP	TE
ISI	Inter-system interface	QoS	Quality of service		arc
ISSI	Individual short subscriber identity	SCH/F	Signalling channel for mapping onto full bursts	TMO	Tru
ITSI	Individual TETRA subscriber identity	SwMI	Switching and management infrastructure	TS	Tin
MCC	Mobile country code	T1	Test signal commonly used to test the TETRA receiver	V+D	Vo

st signal for TETRA II testing (QAM in Frames 1-17, QPSK in Frame 18)

affic channel me division multiple access

TRA Enhanced Data Service, supporting data trans-

ission at rates from 50 to 250 kbit/s TRA interoperability profile (common TETRA stand-

d subset defined by the TETRA Association)

unked mode operation me slot

pice plus data, also known as TMO

Bursts & Frames

Power class	Max. po	ower level		Power class	Max. po	ower level	
1	30.0 W	45.0 dBm	V+D only	3L	1.8 W	32.5 dBm	
1L	17.5 W	42.5 dBm		4	1.0 W	30.0 dBm	
2	10.0 W	40.0 dBm		4L	0.56 W	27.5 dBm	
2L	5.6 W	37.5 dBm		5	0.3 W	25.0 dBm	DMO
3	3.0 W	35.0 dBm					

Power step	Power class 1 (30 W)	Power class 2 (10 W)	Power class 3 (3 W)	Power class 4 (1 W)
1 (45 dBm)	45 dBm ±2 dB	40 dBm ±2 dB	35 dBm ±2 dB	30 dBm ±2 dB
2 (40 dBm)	40 dBm ±2.5 dB	40 dBm ±2 dB	35 dBm ±2 dB	30 dBm ±2 dB
3 (35 dBm)	35 dBm ±2.5 dB	35 dBm ±2.5 dB	35 dBm ±2 dB	30 dBm ±2 dB
4 (30 dBm)	30 dBm ±2.5 dB	30 dBm ±2.5 dB	30 dBm ±2.5 dB	30 dBm ±2 dB
5 (25 dBm)	25 dBm ±2.5 dB	25 dBm ±2.5 dB	25 dBm ±2.5 dB	25 dBm ±2.5 dB
6 (20 dBm)	20 dBm ±2.5 dB	20 dBm ±2.5 dB	20 dBm ±2.5 dB	20 dBm ±2.5 dB
7 (15 dBm)	15 dBm ±2.5 dB	15 dBm ±2.5 dB	15 dBm ±2.5 dB	15 dBm ±2.5 dB

Power step	Power class 1L (17.5 W)	Power class 2L (5.6 W)	Power class 3L (1.8 W)	Power class 4L (0.56 W)
1 (45 dBm)	42.5 dBm ±2 dB	37.5 dBm ±2 dB	32.5 dBm ±2 dB	27.5 dBm ±2 dB
2 (40 dBm)	40 dBm ±2.5 dB	37.5 dBm ±2 dB	32.5 dBm ±2 dB	27.5 dBm ±2 dB
3 (35 dBm)	35 dBm ±2.5 dB	35 dBm ±2.5 dB	32.5 dBm ±2 dB	27.5 dBm ±2 dB
4 (30 dBm)	30 dBm ±2.5 dB	30 dBm ±2.5 dB	30 dBm ±2.5 dB	27.5 dBm ±2 dB
5 (25 dBm)	25 dBm ±2.5 dB	25 dBm ±2.5 dB	25 dBm ±2.5 dB	25 dBm ±2.5 dB
6 (20 dBm)	20 dBm ±2.5 dB	20 dBm ±2.5 dB	20 dBm ±2.5 dB	20 dBm ±2.5 dB
7 (15 dBm)	15 dBm ±2.5 dB	15 dBm ±2.5 dB	15 dBm ±2.5 dB	15 dBm ±2.5 dB

Measurements & Limits

RF power

Maximum power, power control steps; see table in previous column

Burst power versus time

$L_{min} = max (-70 \text{ dBc}, -36 \text{ dBm})$

Burst type	t ₁	t ₂	t ₃
Control uplink burst	16 symbols	103 symbols	15 symbols
Normal uplink burst	16 symbols	231 symbols	15 symbols
Discontinuous downlink burst	7 symbols	246 symbols	7 symbols
Continuous downlink burst	Unspecified	Unspecified	Unspecified

Frame alignment

Burst timing error (deviation from the timing given by the base station) Limit = $\pm \frac{1}{4}$ symbol

Frequency error limits for TETRA mobile stations EN 300 392-2 (V+D) ed. 2: Limit = ± 100 Hz EN 300 396-2 (DMO): Limit = ± 1 kHz (master), ± 100 Hz (slave)

Residual carrier power

DC offset in the I-Q modulator Limit = 5%

Receiver measurements

relative to the magnitude of the ideal vector.

Peak vector error (within a burst) – limit: 30%

RMS vector error (averaged over a burst) – limit: 10%

Vector error

Based on bit error rate (BER) measurements at a defined input power level

T1 signal:	The test equipment transmits a pseudo-random bit sequence, the MS synchronises onto the signal and counts bit errors (measurement in the MS)
TT loopback:	Receiver test mode initiated through a designated test protocol. The MS loops back the received bit sequence to the tester, the tester counts bit errors (measurement in the test equipment)
T1 loopback:	Receiver test mode in which the MS loops back the received bit sequence to the tester without any protocol (no call being set up). The tester counts bit errors (measurement in the test equipment)
Limit:	0.01% at -112 dBm (receiver sensitivity, static conditions)